1932

Abstract

Dilated cardiomyopathy (DCM) is defined as dilation and/or reduced function of one or both ventricles and remains a common disease worldwide. An estimated 40% of cases of familial DCM have an identifiable genetic cause. Accordingly, there is a fast-growing interest in the field of molecular genetics as it pertains to DCM. Many gene mutations have been identified that contribute to phenotypically significant cardiomyopathy. DCM genes can affect a variety of cardiomyocyte functions, and particular genes whose function affects the cell–cell junction and cytoskeleton are associated with increased risk of arrhythmias and sudden cardiac death. Through advancements in next-generation sequencing and cardiac imaging, identification of genetic DCM has improved over the past couple decades, and precision medicine is now at the forefront of treatment for these patients and their families. In addition to standard treatment of heart failure and prevention of arrhythmias and sudden cardiac death, patients with genetic cardiomyopathy stand to benefit from gene mechanism–specific therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-052422-020535
2024-01-29
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-052422-020535.html?itemId=/content/journals/10.1146/annurev-med-052422-020535&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shore S, Grau-Sepulveda MV, Bhatt DL et al. 2015. Characteristics, treatments, and outcomes of hospitalized heart failure patients stratified by etiologies of cardiomyopathy. JACC Heart Failure 3:90616
    [Google Scholar]
  2. 2.
    Codd MB, Sugrue DD, Gersh BJ, Melton L Jr. 1989. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 80:56472
    [Google Scholar]
  3. 3.
    Torp A. 1978. Incidence of congestive cardiomyopathy. Postgrad. Med. J. 54:6334359
    [Google Scholar]
  4. 4.
    Manolio TA, Baughman KL, Rodeheffer R et al. 1992. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop). Am. J. Cardiol. 69:17145866
    [Google Scholar]
  5. 5.
    Miura K, Nakagawa H, Morikawa Y et al. 2002. Epidemiology of idiopathic cardiomyopathy in Japan: results from a nationwide survey. Heart 87:212630
    [Google Scholar]
  6. 6.
    Amoah AG, Kallen C. 2000. Aetiology of heart failure as seen from a National Cardiac Referral Centre in Africa. Cardiology 93:1–21118
    [Google Scholar]
  7. 7.
    McNally EM, Mestroni L. 2017. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ. Res. 121:73148
    [Google Scholar]
  8. 8.
    Ganesh SK, Arnett DK, Assimes TL et al. 2013. Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation 128:25281351
    [Google Scholar]
  9. 9.
    Gigli M, Begay RL, Morea G et al. 2016. A review of the giant protein titin in clinical molecular diagnostics of cardiomyopathies. Front. Cardiovasc. Med. 3:21
    [Google Scholar]
  10. 10.
    Thomas DC. 2004. Statistical Methods in Genetic Epidemiology New York: Oxford Univ. Press
  11. 11.
    Hazebroek MR, Moors S, Dennert R et al. 2015. Prognostic relevance of gene-environment interactions in patients with dilated cardiomyopathy: applying the MOGE(S) classification. J. Am. Coll. Cardiol. 66:12131323
    [Google Scholar]
  12. 12.
    Morales A, Kinnamon DD, Jordan E et al. 2020. Variant interpretation for dilated cardiomyopathy: refinement of the American College of Medical Genetics and Genomics/ClinGen Guidelines for the DCM Precision Medicine Study. Circ. Genom. Precis. Med. 13:2e002480
    [Google Scholar]
  13. 13.
    Haas J, Frese K, Peil B et al. 2015. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36:18112335
    [Google Scholar]
  14. 14.
    Cowan JR, Kinnamon DD, Morales A et al. 2018. Multigenic disease and bilineal inheritance in dilated cardiomyopathy is illustrated in nonsegregating LMNA pedigrees. Circ. Genom. Precis. Med. 11:7e002038
    [Google Scholar]
  15. 15.
    Akhtar MM, Lorenzini M, Cicerchia M et al. 2020. Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN gene. Circ. Heart Fail. 13:e006832
    [Google Scholar]
  16. 16.
    Roberts AM, Ware JS, Herman DS et al. 2015. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 7:270ra6
    [Google Scholar]
  17. 17.
    Fatkin D, Calkins H, Elliott P et al. 2021. Contemporary and future approaches to precision medicine in inherited cardiomyopathies: JACC focus seminar 3/5. J. Am. Coll. Cardiol. 7:20255172
    [Google Scholar]
  18. 18.
    Eldemire R, Taylor MRG, Mestroni L. 2020. Understanding the role of titin in dilated cardiomyopathy. Int. J. Cardiol. 316:18687
    [Google Scholar]
  19. 19.
    Fatkin D, Seidman CE, Seidman JG. 2014. Genetics and disease of ventricular muscle. Cold Spring Harb. Perspect. Med. 4:1a021063
    [Google Scholar]
  20. 20.
    Harakalova M, Kummeling G, Sammani A et al. 2015. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific. Eur. J. Heart Fail. 17:548493
    [Google Scholar]
  21. 21.
    Posafalvi A, Herkert JC, Sinke RJ et al. 2013. Clinical utility gene card for: dilated cardiomyopathy (CMD). Eur. J. Hum. Genet. 21:10 https://doi.org/10.1038/ejhg.2012.276
    [Google Scholar]
  22. 22.
    Towbin JA. 2020. Pediatric primary dilated cardiomyopathy gene testing and variant reclassification: Does it matter?. J. Am. Heart Assoc. 9:11e016910
    [Google Scholar]
  23. 23.
    Long PA, Evans JM, Olson TM. 2017. Diagnostic yield of whole exome sequencing in pediatric dilated cardiomyopathy. J. Cardiovasc. Dev. Dis. 4:311
    [Google Scholar]
  24. 24.
    Towbin JA, Lowe AM, Colan SD et al. 2006. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:15186776
    [Google Scholar]
  25. 25.
    Singh RK, Canter CE, Shi L et al. 2017. Survival without cardiac transplantation among children with dilated cardiomyopathy. J. Am. Coll. Cardiol. 70:21266373
    [Google Scholar]
  26. 26.
    Van der Meulen MH, Herkert JC, den Boer SL et al. 2022. Genetic evaluation of a nation-wide Dutch pediatric DCM cohort: the use of genetic testing in risk stratification. Circ. Genom. Precis. Med. 15:5e002981
    [Google Scholar]
  27. 27.
    Hershberger RE, Givertz MM, Ho CY et al. 2018. Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J. Cardiac Fail. 24:281302
    [Google Scholar]
  28. 28.
    Pinamonti B, Abate E, De Luca A et al. 2019. Role of cardiac imaging: echocardiography. Dilated Cardiomyopathy: From Genetics to Clinical Management G Sinagra, M Merlo, B Pinamonti, et al., ch. 7 Cham, Switz.: Springer https://www.ncbi.nlm.nih.gov/books/NBK553855/
    [Google Scholar]
  29. 29.
    Mestroni L, Maisch B, McKenna WJ et al. 1999. Guidelines for the study of familial dilated cardiomyopathies. Eur. Heart J. 20:293102
    [Google Scholar]
  30. 30.
    Hoffmann R, Barletta G, von Bardeleben S et al. 2104. Analysis of left ventricular volumes and function: a multicenter comparison of cardiac magnetic resonance imaging, cine ventriculography, and unenhanced and contrast-enhanced two-dimensional and three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 27:3292301
    [Google Scholar]
  31. 31.
    Gutiérrez-Chico JL, Zamorano JL, Pérez de Isla L et al. 2005. Comparison of left ventricular volumes and ejection fractions measured by three-dimensional echocardiography versus by two-dimensional echocardiography and cardiac magnetic resonance in patients with various cardiomyopathies. Am. J. Cardiol. 95:680913
    [Google Scholar]
  32. 32.
    Shiota T, McCarthy PM, White RD et al. 1999. Initial clinical experience of real-time three-dimensional echocardiography in patients with ischemic and idiopathic dilated cardiomyopathy. Am. J. Cardiol. 84:9106873
    [Google Scholar]
  33. 33.
    Douglas PS, Morrow R, Loli A, Reichek N. 1989. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 13:231115
    [Google Scholar]
  34. 34.
    Strohm O, Schulz-Menger J, Pilz B et al. 2001. Measurement of left ventricular dimensions and function in patients with dilated cardiomyopathy. J. Magn. Reson. Imaging 13:336771
    [Google Scholar]
  35. 35.
    Schulz-Menger J, Friedrich MG. 2000. Magnetic resonance imaging in patients with cardiomyopathies: when and why. Herz 25:438491
    [Google Scholar]
  36. 36.
    Francone M, Carbone I, Agati L et al. 2011. Utility of T2-weighted short-tau inversion recovery (STIR) sequences in cardiac MRI: an overview of clinical applications in ischaemic and non-ischaemic heart disease. Radiol. Med. 116:13246
    [Google Scholar]
  37. 37.
    Eitel I, Behrendt F, Schindler K et al. 2008. Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur. Heart J. 29:21265159
    [Google Scholar]
  38. 38.
    Bruder O, Wagner A, Jensen CJ et al. 2010. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56:1187587
    [Google Scholar]
  39. 39.
    Francone M. 2014. Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN Radiol. 2014:365404
    [Google Scholar]
  40. 40.
    Gulati A, Jabbour A, Ismail TF et al. 2013. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309:9896908
    [Google Scholar]
  41. 41.
    McCrohon JA, Moon JC, Prasad SK et al. 2003. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:15459
    [Google Scholar]
  42. 42.
    Kramer CM. 2015. Role of cardiac MR imaging in cardiomyopathies. J. Nucl. Med. 56:Suppl. 439S45S
    [Google Scholar]
  43. 43.
    Wu KC, Weiss RG, Thiemann DR et al. 2008. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J. Am. Coll. Cardiol. 51:25241421
    [Google Scholar]
  44. 44.
    Fatkin D, MacRae C, Sasaki T et al. 1999. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341:23171524
    [Google Scholar]
  45. 45.
    Cadrin-Tourigny J, Bosman LP, Nozza A et al. 2019. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 40:23185058
    [Google Scholar]
  46. 46.
    Mann SA, Castro ML, Ohanian M et al. 2012. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 60:16156673
    [Google Scholar]
  47. 47.
    McNair WP, Sinagra G, Taylor MR et al. 2011. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J. Am. Coll. Cardiol. 57:21216068
    [Google Scholar]
  48. 48.
    Smith ED, Lakdawala NK, Papoutsidakis N et al. 2020. Desmoplakin cardiomyopathy, a fibrotic and inflammatory form of cardiomyopathy distinct from typical dilated or arrhythmogenic right ventricular cardiomyopathy. Circulation 141:23187284
    [Google Scholar]
  49. 49.
    Ortiz-Genga MF, Cuenca S, Dal Ferro M et al. 2016. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J. Am. Coll. Cardiol. 68:22244051
    [Google Scholar]
  50. 50.
    Augusto JB, Eiros R, Nakou E et al. 2020. Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study. Eur. Heart J. Cardiovasc. Imaging 21:332636
    [Google Scholar]
  51. 51.
    Hershberger RE, Hedges DJ, Morales A. 2013. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10:53147
    [Google Scholar]
  52. 52.
    McNally EM, Golbus JR, Puckelwartz MJ. 2013. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Investig. 123:11926
    [Google Scholar]
  53. 53.
    Eldemire R, Tharp CA, Taylor MRG et al. 2021. The sarcomeric spring protein titin: biophysical properties, molecular mechanisms, and genetic mutations associated with heart failure and cardiomyopathy. Curr. Cardiol. Rep. 23:9121
    [Google Scholar]
  54. 54.
    Maruyama K, Kimura S, Yoshidomi H et al. 1984. Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J. Biochem. 95:142333
    [Google Scholar]
  55. 55.
    van Spaendonck-Zwarts KY, Posafalvi A, van den Berg MP et al. 2014. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 35:32216573
    [Google Scholar]
  56. 56.
    Ware JS, Li J, Mazaika E et al. 2016. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 374:23341
    [Google Scholar]
  57. 57.
    Lu JT, Muchir A, Nagy PL, Worman HJ. 2011. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine. Dis. Model. Mech. 4:556268
    [Google Scholar]
  58. 58.
    Kumar S, Baldinger SH, Gandjbakhch E et al. 2016. Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J. Am. Coll. Cardiol. 68:212299307
    [Google Scholar]
  59. 59.
    Pasotti M, Klersy C, Pilotto A et al. 2008. Long-term outcome and risk stratification in dilated cardiolaminopathies. J. Am. Coll. Cardiol. 52:15125060
    [Google Scholar]
  60. 60.
    Haghighi K, Kolokathis F, Gramolini AO et al. 2006. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. PNAS 103:5138893
    [Google Scholar]
  61. 61.
    Liu GS, Morales A, Vafiadaki E et al. 2015. A novel human R25C-phospholamban mutation is associated with super-inhibition of calcium cycling and ventricular arrhythmia. Cardiovasc. Res. 107:116474
    [Google Scholar]
  62. 62.
    Stillitano F, Turnbull IC, Karakikes I et al. 2016. Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. Eur. Heart J. 37:328284
    [Google Scholar]
  63. 63.
    Veerman CC, Wilde AA, Lodder EM. 2015. The cardiac sodium channel gene SCN5A and its gene product NaV1.5: role in physiology and pathophysiology. Gene 573:217787
    [Google Scholar]
  64. 64.
    Adorisio R, Mencarelli E, Cantarutti N et al. 2020. Duchenne dilated cardiomyopathy: cardiac management from prevention to advanced cardiovascular therapies. J. Clin. Med. 9:103186
    [Google Scholar]
  65. 65.
    Chen SN, Lam CK, Wan YW et al. 2022. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. Sci. Adv. 8:8eabk0052
    [Google Scholar]
  66. 66.
    Gigli M, Stolfo D, Graw SL et al. 2021. Phenotypic expression, natural history, and risk stratification of cardiomyopathy caused by filamin C truncating variants. Circulation 144:20160011
    [Google Scholar]
  67. 67.
    Heidenreich PA, Bozkurt B, Aguilar D et al. 2022. AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 45:18e8951032
    [Google Scholar]
  68. 68.
    Towbin JA, McKenna WJ, Abrams DJ et al. 2019. HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 16:11e30172
    [Google Scholar]
  69. 69.
    Helms AS, Thompson AD, Day SM. 2021. Translation of new and emerging therapies for genetic cardiomyopathies. JACC Basic Transl. Sci. 7:17083
    [Google Scholar]
  70. 70.
    Teerlink JR, Diaz R, Felker GM et al. 2021. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med. 384:10516
    [Google Scholar]
/content/journals/10.1146/annurev-med-052422-020535
Loading
/content/journals/10.1146/annurev-med-052422-020535
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error